4633 measured reflections

 $R_{\rm int} = 0.082$

2592 independent reflections

1097 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Benzovlamino-N-[5-(4-bromophenyl)-1,3,4-thiadiazol-2-yl]ethanamide

Hui-Ming Huang,^{a,b} Shi-Yuan Luo,^b Shao-Hua Li,^b Cheng-Mei Liu^a[‡] and Guo-Gang Tu^b*

^aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, JiangXi, People's Republic of China, and ^bDepartment of Pharmacy, NanChang University Medical College, 330006 Nanchang, JiangXi, People's Republic of China

Correspondence e-mail: tugg199@yahoo.com

Received 29 December 2008; accepted 10 January 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.109; wR factor = 0.281; data-to-parameter ratio = 11.4.

In the structure of the title compound, $C_{17}H_{13}BrN_4O_2S$, the dihedral angle between the two benzene rings is $38.5 (1)^\circ$; the angle between the 4-bromobenzene and thiadiazole rings is $1.3 (1)^{\circ}$. The conformations of the N–H and C=O bonds are anti with respect to each other. The structure displays intermolecular $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonding, with both interactions leading to inversion dimers.

Related literature

For 1,3,4-thiadiazole scaffold compounds and their biological activity, see: Tu et al. (2008). For the synthesis, see: Foroumadi et al. (1999); Levy & Palmer (1942); Song et al. (1992). For related structures, see: Gowda et al. (2008); Li, Huang et al. (2008); Li, Li et al. (2008).

Experimental

Crystal data

C17H13BrN4O2S $M_r = 417.28$ Triclinic, $P\overline{1}$ a = 4.020 (4) Å b = 13,706 (9) Å c = 16.210 (5) Å $\alpha = 113.334 (17)^{\circ}$ $\beta = 94.018 \ (19)^{\circ}$

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.591, T_{\max} = 0.914$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.109$	6 restraints
$wR(F^2) = 0.281$	H-atom parameters constrained
S = 0.82	$\Delta \rho_{\rm max} = 1.67 \text{ e } \text{\AA}^{-3}$
2592 reflections	$\Delta \rho_{\rm min} = -1.40 \text{ e } \text{\AA}^{-3}$
227 parameters	

Table 1 Hydrogen-bond geometry (Å, °)

i i j di ogen	oona	geometry	(,).	
$D - H \cdots A$		<i>D</i> -	-H	$H \cdots A$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C16-H16A\cdots O2^{i}$ $N2-H2A\cdots O1^{ii}$	0.93	2.49	3.400 (5)	168
	0.86	1.99	2.835 (5)	167

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

The work was supported by the Science and Technology Research Project of JiangXi Provincial Educational Department (No. GJJ09076), the Science and Technology Planning Project of JiangXi Provincial Health Department (No. 20082015) and the Natural Science Foundation of JiangXi Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2304).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035-1038.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, 0950.
- Levv. M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493-495.
- Li, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006.
- Li, S.-H., Li, G., Huang, H.-M., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, 01887
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823-826.
- Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.

Westrip, S. P. (2009). publCIF. In preparation.

‡ Additional correspondence author, e-mail: lishaohua0131@yahoo.com.cn.

supplementary materials

Acta Cryst. (2009). E65, o325 [doi:10.1107/S160053680900124X]

2-Benzoylamino-N-[5-(4-bromophenyl)-1,3,4-thiadiazol-2-yl]ethanamide

H.-M. Huang, S.-Y. Luo, S.-H. Li, C.-M. Liu and G.-G. Tu

Comment

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu *et al.*, 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi *et al.*, 1999; Levy & Palmer 1942; Song *et al.*, 1992) and its crystal structure is reported here.

In the structure of the title compound, $C_{17}H_{13}BrN_4O_2S$, the dihedral angle between the *p*-bromobenzene and thiadiazole rings is 1.3 (1)°; the angle between the two benzene rings is 38.5 (1)°. The conformations of the N—H and C=O bonds are *anti* with respect to each other. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda *et al.*, 2008; Li, Huang *et al.*, 2008; Li, Li *et al.*, 2008). In the crystal structure, molecules are linked through intermolecular C—H…O and N—H…O hydrogen bonds, forming a three-dimensional network (Table 1, Figure 2).

Experimental

N,*N*-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of *N*-benzoylglycine (5.6 mmol) and *N*-hydroxysuccinimide (5.6 mmol) in freshly distilled dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-bromophenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na₂CO₃ solution (20 ml, *x* 3), water (20 ml, *x* 1), 0.1 *M* HCl (20 ml, *x* 3) and water (20 ml, *x* 1). The organic layer evaporated *in vacuo*, and the residue was recrystallized from methanol. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.Yield: 37.0%; mp: 271–273°C.

Refinement

H atoms were positioned geometrically and refined using a riding model; Csp^2 —H = 0.93 Å, Csp^3 —H = 0.97 Å and N—H = 0.86 Å; $U_{\bar{1}SO}(H) = 1.2 U_{eq}(C,N)$. We made several attempts to obtain better quality data for this structure. However, due to poor crystal quality and possible disorder, the *R* and *wR* values are high. The maximum residual electron density occurs 1.23 Å from atom Br1, and the minimum residual electron density is located 1.29 Å from atom Br1.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. The crystal packing of the title compound, viewed along the *a* axis with hydrogen bonds drawn as dashed lines.

2-Benzoylamino-N-[5-(4-bromophenyl)-1,3,4-thiadiazol-2-yl]ethanamide

Crystal data	
$C_{17}H_{13}BrN_4O_2S$	Z = 2
$M_r = 417.28$	$F_{000} = 420.0$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.700 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 4.020 (4) Å	Cell parameters from 1179 reflections
b = 13.706 (9) Å	$\theta = 2.6 - 23.7^{\circ}$
c = 16.210 (5) Å	$\mu = 2.67 \text{ mm}^{-1}$
$\alpha = 113.334 \ (17)^{\circ}$	T = 298 (2) K
$\beta = 94.018 \ (19)^{\circ}$	Block, colourless
$\gamma = 92.78 \ (2)^{\circ}$	$0.54 \times 0.17 \times 0.04 \text{ mm}$
$V = 815.2 (10) \text{ Å}^3$	

Data collection

Bruker X8 APEXII diffractometer	2592 independent reflections
Radiation source: fine-focus sealed tube	1097 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.082$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2008)	$h = -4 \rightarrow 4$
$T_{\min} = 0.591, T_{\max} = 0.914$	$k = -16 \rightarrow 16$
4633 measured reflections	$l = -19 \rightarrow 19$

Refinement
J

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.109$	H-atom parameters constrained
$wR(F^2) = 0.281$	$w = 1/[\sigma^2(F_o^2) + (0.1951P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.82	$(\Delta/\sigma)_{\rm max} = 0.019$

2592 reflections	$\Delta \rho_{\text{max}} = 1.67 \text{ e } \text{\AA}^{-3}$
227 parameters	$\Delta \rho_{min} = -1.39 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.022 (2)

Special details

Experimental. ¹H-NMR (DMSO-*d6*): δ 4.24–4.25(d, *J*=5.08 Hz, 2H), 7.49–7.57 (m, 3H),7.73–7.75 (d, *J*=8.04 Hz, 2H), 7.89–7.91(t, *J*=3.60 Hz, 4H), 9.01 (s, 1H),12.91 (s, 1H). ESI-MS: *m/z* [*M*+H]⁺ 417.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic co	oordinates and	isotropic or	equivalent	isotropic	displacement	parameters	(Å ²	')
		1	1		1	1	1	

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.19570 (14)	0.16142 (4)	0.64242 (3)	0.07526 (19)
S1	0.3284 (3)	0.41677 (8)	0.33059 (7)	0.0550 (4)
01	0.2257 (8)	0.6333 (2)	-0.00717 (17)	0.0636 (9)
O2	0.2253 (9)	0.5689 (2)	0.25867 (18)	0.0687 (8)
N1	0.2711 (9)	0.6635 (2)	0.1388 (2)	0.0551 (12)
H1A	0.2352	0.7034	0.1931	0.066*
N3	0.5949 (10)	0.2787 (3)	0.1998 (2)	0.0621 (13)
N4	0.5645 (10)	0.2351 (2)	0.2632 (2)	0.0597 (8)
N2	0.4834 (9)	0.4276 (2)	0.1728 (2)	0.0539 (8)
H2A	0.5726	0.3992	0.1229	0.065*
C4	-0.2078 (13)	0.9136 (3)	0.0368 (3)	0.0711 (18)
H4B	-0.3108	0.9254	-0.0112	0.085*
C5	-0.0907 (12)	0.8176 (3)	0.0241 (3)	0.0610 (16)
H5A	-0.1231	0.7628	-0.0332	0.073*
C10	0.4756 (11)	0.3703 (3)	0.2263 (3)	0.0512 (11)
C16	0.1797 (12)	0.3039 (3)	0.5556 (3)	0.0632 (17)
H16A	0.0838	0.3486	0.6061	0.076*
C15	0.2691 (13)	0.2067 (3)	0.5481 (3)	0.0603 (10)
C12	0.3711 (10)	0.2674 (3)	0.4098 (2)	0.0471 (9)
C14	0.4058 (11)	0.1370 (3)	0.4729 (3)	0.0598 (11)
H14A	0.4596	0.0701	0.4688	0.072*
C17	0.2354 (12)	0.3345 (3)	0.4857 (3)	0.0587 (11)
H17A	0.1807	0.4014	0.4900	0.070*
C8	0.4114 (12)	0.5638 (3)	0.1200 (3)	0.0560 (15)

supplementary materials

0.6486	0.5723	0.1144	0.067*
0.3068	0.5116	0.0627	0.067*
0.3647 (11)	0.5237 (3)	0.1913 (2)	0.0475 (10)
0.4297 (11)	0.2963 (3)	0.3341 (2)	0.0483 (10)
0.4598 (12)	0.1698 (3)	0.4041 (3)	0.0601 (16)
0.5571	0.1253	0.3537	0.072*
0.1970 (11)	0.6938 (3)	0.0722 (3)	0.0521 (13)
0.0730 (11)	0.7991 (3)	0.0926 (2)	0.0489 (14)
-0.0154 (12)	0.9776 (3)	0.1919 (3)	0.0601 (16)
0.0074	1.0320	0.2494	0.072*
-0.1698 (12)	0.9930 (3)	0.1230 (3)	0.0643 (17)
-0.2533	1.0585	0.1332	0.077*
0.1113 (12)	0.8805 (3)	0.1780 (3)	0.0555 (15)
0.2216	0.8701	0.2259	0.067*
	0.6486 0.3068 0.3647 (11) 0.4297 (11) 0.4598 (12) 0.5571 0.1970 (11) 0.0730 (11) -0.0154 (12) 0.0074 -0.1698 (12) -0.2533 0.1113 (12) 0.2216	0.64860.57230.30680.51160.3647 (11)0.5237 (3)0.4297 (11)0.2963 (3)0.4598 (12)0.1698 (3)0.55710.12530.1970 (11)0.6938 (3)0.0730 (11)0.7991 (3)-0.0154 (12)0.9776 (3)0.00741.0320-0.1698 (12)0.9930 (3)-0.25331.05850.1113 (12)0.8805 (3)0.22160.8701	0.64860.57230.11440.30680.51160.06270.3647 (11)0.5237 (3)0.1913 (2)0.4297 (11)0.2963 (3)0.3341 (2)0.4598 (12)0.1698 (3)0.4041 (3)0.55710.12530.35370.1970 (11)0.6938 (3)0.0722 (3)0.0730 (11)0.7991 (3)0.0926 (2)-0.0154 (12)0.9776 (3)0.1919 (3)0.00741.03200.2494-0.1698 (12)0.9930 (3)0.1230 (3)-0.25331.05850.13320.1113 (12)0.8805 (3)0.1780 (3)0.22160.87010.2259

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0941 (4)	0.0888 (3)	0.0604 (2)	0.0226 (3)	0.0361 (2)	0.04206 (19)
S1	0.0804 (8)	0.0441 (5)	0.0406 (5)	0.0193 (5)	0.0286 (5)	0.0118 (4)
01	0.106 (2)	0.0501 (14)	0.0414 (6)	0.0279 (14)	0.0433 (10)	0.0174 (7)
02	0.1043 (12)	0.0616 (16)	0.0469 (7)	0.0256 (13)	0.0439 (6)	0.0207 (9)
N1	0.082 (3)	0.0452 (17)	0.0435 (16)	0.0255 (16)	0.0332 (18)	0.0165 (13)
N3	0.099 (3)	0.0488 (17)	0.0448 (17)	0.0288 (18)	0.0270 (19)	0.0193 (13)
N4	0.1059 (15)	0.0386 (15)	0.0399 (8)	0.0252 (12)	0.0297 (7)	0.0154 (8)
N2	0.075 (2)	0.0474 (5)	0.0474 (5)	0.0157 (15)	0.0353 (16)	0.0212 (3)
C4	0.097 (4)	0.049 (2)	0.070 (3)	0.025 (2)	0.022 (3)	0.022 (2)
C5	0.080 (3)	0.042 (2)	0.053 (2)	0.012 (2)	0.009 (2)	0.0102 (18)
C10	0.073 (3)	0.0390 (7)	0.0442 (7)	0.0091 (19)	0.024 (2)	0.0156 (4)
C16	0.080 (3)	0.054 (2)	0.051 (2)	0.012 (2)	0.034 (2)	0.0102 (19)
C15	0.0825 (16)	0.0564 (19)	0.0442 (9)	-0.0018 (12)	0.0194 (8)	0.0211 (8)
C12	0.0546 (15)	0.0498 (18)	0.0351 (9)	0.0036 (12)	0.0172 (7)	0.0131 (8)
C14	0.066 (2)	0.066 (2)	0.0600 (12)	0.0136 (14)	0.0282 (10)	0.0337 (10)
C17	0.078 (2)	0.050 (2)	0.0448 (11)	0.0131 (15)	0.0261 (10)	0.0109 (10)
C8	0.064 (3)	0.061 (2)	0.053 (2)	0.026 (2)	0.035 (2)	0.0269 (16)
C9	0.0644 (16)	0.041 (2)	0.0353 (8)	0.0082 (16)	0.0210 (7)	0.0104 (12)
C11	0.0753 (18)	0.0407 (18)	0.0336 (10)	0.0106 (14)	0.0223 (9)	0.0165 (9)
C13	0.094 (3)	0.042 (2)	0.046 (2)	0.010 (2)	0.030 (2)	0.0159 (16)
C7	0.071 (3)	0.047 (2)	0.0344 (7)	0.0104 (19)	0.0185 (14)	0.0105 (9)
C6	0.061 (3)	0.047 (2)	0.0339 (18)	0.0118 (19)	0.030 (2)	0.0067 (16)
C2	0.078 (3)	0.043 (2)	0.050 (2)	0.009 (2)	0.019 (2)	0.0062 (18)
C3	0.080 (3)	0.052 (2)	0.065 (3)	0.031 (2)	0.025 (3)	0.0211 (19)
C1	0.071 (3)	0.047 (2)	0.046 (2)	0.016 (2)	0.023 (2)	0.0120 (17)

Geometric parameters (Å, °)

Br1—C15	1.898 (5)	C16—C17	1.382 (7)
S1-C10	1.714 (4)	C16—H16A	0.9300
S1—C11	1.741 (5)	C15—C14	1.387 (6)

O1—C7	1.242 (4)	C12—C13	1.370 (6)
O2—C9	1.214 (5)	C12—C17	1.380 (5)
N1—C7	1.323 (6)	C12—C11	1.461 (6)
N1—C8	1.430 (5)	C14—C13	1.383 (7)
N1—H1A	0.8600	C14—H14A	0.9300
N3—C10	1.285 (5)	C17—H17A	0.9300
N3—N4	1.387 (6)	C8—C9	1.483 (7)
N4—C11	1.299 (5)	C8—H8A	0.9700
N2—C9	1.349 (5)	C8—H8B	0.9700
N2—C10	1.381 (6)	C13—H13A	0.9300
N2—H2A	0.8600	С7—С6	1.469 (6)
C4—C5	1.361 (7)	C6—C1	1.383 (5)
C4—C3	1.382 (6)	C2—C3	1.335 (7)
C4—H4B	0.9300	C2—C1	1.388 (6)
C5—C6	1.367 (7)	C2—H2B	0.9300
С5—Н5А	0.9300	С3—Н3В	0.9300
C16—C15	1.359 (7)	C1—H1B	0.9300
C10—S1—C11	86.0 (2)	C16—C17—H17A	119.5
C7—N1—C8	119.6 (3)	N1—C8—C9	112.3 (3)
C7—N1—H1A	120.2	N1—C8—H8A	109.1
C8—N1—H1A	120.2	С9—С8—Н8А	109.1
C10—N3—N4	110.7 (4)	N1—C8—H8B	109.1
C11—N4—N3	113.3 (3)	С9—С8—Н8В	109.1
C9—N2—C10	126.3 (3)	H8A—C8—H8B	107.9
C9—N2—H2A	116.8	O2—C9—N2	121.9 (4)
C10—N2—H2A	116.8	O2—C9—C8	125.0 (4)
C5—C4—C3	118.3 (5)	N2—C9—C8	113.1 (3)
C5—C4—H4B	120.9	N4—C11—C12	123.3 (4)
C3—C4—H4B	120.9	N4—C11—S1	113.4 (3)
C4—C5—C6	122.2 (4)	C12—C11—S1	123.3 (3)
C4—C5—H5A	118.9	C12-C13-C14	120.4 (4)
С6—С5—Н5А	118.9	C12—C13—H13A	119.8
N3—C10—N2	119.8 (4)	C14—C13—H13A	119.8
N3—C10—S1	116.5 (4)	O1—C7—N1	120.5 (4)
N2-C10-S1	123.6 (3)	O1—C7—C6	120.0 (4)
C15—C16—C17	118.0 (4)	N1—C7—C6	119.4 (3)
C15—C16—H16A	121.0	C5—C6—C1	118.3 (4)
C17—C16—H16A	121.0	C5—C6—C7	118.5 (3)
C16-C15-C14	122.6 (5)	C1—C6—C7	123.2 (4)
C16—C15—Br1	119.4 (3)	C3—C2—C1	120.2 (4)
C14—C15—Br1	118.0 (4)	C3—C2—H2B	119.9
C13—C12—C17	119.7 (4)	C1—C2—H2B	119.9
C13—C12—C11	117.6 (3)	C2—C3—C4	121.2 (4)
C17—C12—C11	122.6 (4)	С2—С3—Н3В	119.4
C13—C14—C15	118.2 (4)	C4—C3—H3B	119.4
C13—C14—H14A	120.9	C6—C1—C2	119.8 (4)
C15—C14—H14A	120.9	C6—C1—H1B	120.1
C12—C17—C16	121.0 (4)	C2—C1—H1B	120.1
С12—С17—Н17А	119.5		

supplementary materials

C10-N3-N4-C11	-1.0 (5)	C13—C12—C11—N4	-0.9 (6)
C3—C4—C5—C6	-2.5 (8)	C17—C12—C11—N4	178.3 (4)
N4—N3—C10—N2	179.7 (4)	C13—C12—C11—S1	179.6 (3)
N4—N3—C10—S1	2.2 (5)	C17—C12—C11—S1	-1.2 (6)
C9—N2—C10—N3	179.2 (4)	C10-S1-C11-N4	1.5 (3)
C9—N2—C10—S1	-3.6 (6)	C10—S1—C11—C12	-178.9 (4)
C11—S1—C10—N3	-2.2 (4)	C17—C12—C13—C14	1.8 (6)
C11—S1—C10—N2	-179.5 (4)	C11—C12—C13—C14	-179.0 (4)
C17-C16-C15-C14	-1.5 (7)	C15-C14-C13-C12	-1.8 (7)
C17-C16-C15-Br1	-179.8 (3)	C8—N1—C7—O1	5.2 (6)
C16—C15—C14—C13	1.7 (7)	C8—N1—C7—C6	-176.1 (4)
Br1-C15-C14-C13	-179.9 (3)	C4—C5—C6—C1	1.8 (7)
C13—C12—C17—C16	-1.6 (6)	C4—C5—C6—C7	-178.7 (5)
C11—C12—C17—C16	179.2 (4)	O1—C7—C6—C5	17.2 (7)
C15-C16-C17-C12	1.4 (7)	N1—C7—C6—C5	-161.5 (4)
C7—N1—C8—C9	-159.0 (4)	O1—C7—C6—C1	-163.3 (4)
C10—N2—C9—O2	-2.3 (6)	N1-C7-C6-C1	18.0 (7)
C10—N2—C9—C8	-180.0 (4)	C1—C2—C3—C4	0.1 (8)
N1—C8—C9—O2	-0.2 (6)	C5—C4—C3—C2	1.6 (8)
N1—C8—C9—N2	177.4 (3)	C5—C6—C1—C2	0.0 (7)
N3—N4—C11—C12	179.8 (4)	C7—C6—C1—C2	-179.5 (4)
N3—N4—C11—S1	-0.6 (5)	C3—C2—C1—C6	-0.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C16—H16A···O2 ⁱ	0.93	2.49	3.400 (5)	168
N2—H2A···O1 ⁱⁱ	0.86	1.99	2.835 (5)	167
Symmetry codes: (i) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +1; (ii) - <i>x</i> +1, - <i>y</i> +1,	<i>-z</i> .			

sup-6

Fig. 1

